81 research outputs found

    Genetic Mouse Models for Osteoarthritis Research

    Get PDF

    Advancing herbal medicine: enhancing product quality and safety through robust quality control practices

    Get PDF
    This manuscript provides an in-depth review of the significance of quality control in herbal medication products, focusing on its role in maintaining efficiency and safety. With a historical foundation in traditional medicine systems, herbal remedies have gained widespread popularity as natural alternatives to conventional treatments. However, the increasing demand for these products necessitates stringent quality control measures to ensure consistency and safety. This comprehensive review explores the importance of quality control methods in monitoring various aspects of herbal product development, manufacturing, and distribution. Emphasizing the need for standardized processes, the manuscript delves into the detection and prevention of contaminants, the authentication of herbal ingredients, and the adherence to regulatory standards. Additionally, it highlights the integration of traditional knowledge and modern scientific approaches in achieving optimal quality control outcomes. By emphasizing the role of quality control in herbal medicine, this manuscript contributes to promoting consumer trust, safeguarding public health, and fostering the responsible use of herbal medication products

    Application of insect-proof nets in pesticide-free rice creates an altered microclimate and differential agronomic performance

    Get PDF
    Background Insect-proof nets are commonly used in crop production and scientific research because of their environmental, economic, and agronomic benefits. However, insect-proof nets can unintentionally alter the microclimate inside the screenhouse and therefore greatly affect plant growth and yield. To examine the microclimate and agronomic performance of pesticide-free rice under insect-proof nets, two-year field experiments were carried out in 2011 and 2012. Methods In the present study, the experiment was conducted by using a split-plot design considering the cultivation environment (open field cultivation (OFC) and insect-proof nets cultivation (IPNC)) as the main plot and the varieties as the subplot (Suxiangjing3 and Nanjing44). Results IPNC significantly reduced the air speed and solar radiation, and slightly increased the daytime soil temperature, daytime air temperature, and nighttime relative humidity. By contrast, the nighttime soil temperature, nighttime air temperature, and daytime relative humidity were relatively unaffected. The grain yield of both rice cultivars decreased significantly under IPNC, which was largely attributed to the reduced panicle number. The reduced panicle number was largely associated with the decreased maximum tiller number, which was positively correlated with the tillering rate, time of tillering onset, and tillering cessation for both rice cultivars under IPNC. In addition, dry matter accumulation significantly decreased for both rice cultivars under IPNC, which was mainly caused by the decreased leaf area duration resulting from the reduced leaf area index. By contrast, the mean net assimilation rate was relatively unaffected by IPNC. Discussion Insect-proof nets altered the microclimate in comparison with OFC by reducing the air speed and changing the radiation regime, which significantly affected dry matter production and yield of both japonica rice cultivars. Our results indicated that cultivation measures that could increase the tillering rate and the maximum tiller number under IPNC would lead to a significant increase in panicle number, ultimately increasing grain yield. In addition, maintaining a high leaf area duration by increasing the leaf area index would be important to compensate for the dry matter accumulation losses under IPNC. These findings are critical to provide a theoretical basis for improving agronomic performance of pesticide-free rice under IPNC

    (1)H NMR-based metabonomics study of urine and serum samples from diabetic db/db mice

    Get PDF
    A metabonomics approach based on high resolution (1)H NMR spectroscopy was applied to investigate the metabolite fingerprints in urine and serum samples from db/db mice of 8 weeks old, an animal model of type 2 diabetes mellitus (T2DM). Both NMR spectra and metabonomics results were discussed and the variations on related metabolic pathway were analyzed. The urinary excretions of diabetic mice have elevated levels of citrate, alanine, acetate, TMAO, hippurate, taurine, creatinine, succinate, pyruvate, glycine in addition to evident increase of glucose compared to the control ones. The metabolic variation in serum samples of db/db mice is marked by the increases of lactate, 3-hydroxybutyrate, glutamine, glutamate and choline and the decreases of leucine and valine. These results indicate that NMR-based metabonomics is an efficient approach for investigating the subtle metabolic alterations in urine and serum from diabetic mice and the findings of the characteristic metabolites would be helpful for early diagnosis and prevention of T2DM and its related complications

    A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

    Get PDF
    The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, [pi]–[pi] stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    Hyperkalemic or Low Potassium Cardioplegia Protects against Reduction of Energy Metabolism by Oxidative Stress

    No full text
    Open-heart surgery is often an unavoidable option for the treatment of cardiovascular disease and prevention of cardiomyopathy. Cardiopulmonary bypass surgery requires manipulating cardiac contractile function via the perfusion of a cardioplegic solution. Procedure-associated ischemia and reperfusion (I/R) injury, a major source of oxidative stress, affects postoperative cardiac performance and long-term outcomes. Using large-scale liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based metabolomics, we addressed whether cardioplegic solutions affect the baseline cellular metabolism and prevent metabolic reprogramming by oxidative stress. AC16 cardiomyocytes in culture were treated with commonly used cardioplegic solutions, High K+ (HK), Low K+ (LK), Del Nido (DN), histidine–tryptophan–ketoglutarate (HTK), or Celsior (CS). The overall metabolic profile shown by the principal component analysis (PCA) and heatmap revealed that HK or LK had a minimal impact on the baseline 78 metabolites, whereas HTK or CS significantly repressed the levels of multiple amino acids and sugars. H2O2-induced sublethal mild oxidative stress causes decreases in NAD, nicotinamide, or acetylcarnitine, but increases in glucose derivatives, including glucose 6-P, glucose 1-P, fructose, mannose, and mannose 6-P. Additional increases include metabolites of the pentose phosphate pathway, D-ribose-5-P, L-arabitol, adonitol, and xylitol. Pretreatment with HK or LK cardioplegic solution prevented most metabolic changes and increases of reactive oxygen species (ROS) elicited by H2O2. Our data indicate that HK and LK cardioplegic solutions preserve baseline metabolism and protect against metabolic reprogramming by oxidative stress

    Petrogenesis of Chatoyant Green Nephrite from Serpentinite-Related Deposits, Ospinsk, Russia: Insights from Mineralogy and Geochemistry

    No full text
    Ospinsk is an area in Russia well-known for mining the highest quality green nephrite in the world. However, the chatoyant green nephrite found here has not been studied to date. This study explores the mineralogy, geochemistry, and petrogenesis of chatoyant green nephrite collected from Ospinsk using polarizing microscope back-scattered electron images, scanning electron microscopy, Fourier transform infrared spectrometry, laser Raman spectroscopy, electron microprobe analysis, and laser ablation inductively coupled plasma mass spectrometry, and compares them with S-type green nephrite from other regions of the world. Tremolite is the main mineral constituent, and chromite, chlorite, graphite, and magnetite are accessory minerals in the samples. The chatoyant green nephrite from Ospinsk is serpentinite-related green nephrite. The Ti content of the chatoyant green nephrite from Ospinsk is significantly higher than that of green nephrite from other places. The chatoyant green nephrite deposit in Ospinsk is a contact metasomatic deposit related to ultramafic rocks. The ultramafic rocks first altered to serpentinite and later converted to tremolite after repeated thermal contact-based metasomatism. During the metasomatism of serpentinite into green nephrite, unilateral, compressive, and shear stresses caused by obduction forced directional growth of tremolite, resulting in chatoyancy
    • …
    corecore